LETTERS 1999 Vol. 1, No. 10 ¹⁵³⁹-**¹⁵⁴¹**

ORGANIC

Thia-Wittig-like Reactions as a New Route for the Stereoselective Synthesis of (*Z***)-Fluoroalkenoates**

David Chevrie, Thierry Lequeux,* and Jean-Claude Pommelet*

Laboratoire de Chimie Mole´*culaire et Thio-organique, UMR CNRS 6507, Uni*V*ersite*´ *de Caen-ISMRA, 6 Boule*V*ard du Mare*´*chal Juin, 14050 Caen Cedex, France*

thierry.lequeux@ismra.fr

Received July 21, 1999

ABSTRACT

 a (i) LDA; (ii) RCHO. b mCPBA, CH₂Cl₂. c SO₂Cl₂, CH₂Cl₂. d - SO₂

Stereoselective syntheses of (*Z***)-fluoroalkenoates 3a**−**g have been developed in three steps from the readily available fluorosulfide 5 and aldehydes. This preparation, involving a Durst reaction, was highly stereoselective and led to fluoroalkenes in 50**−**60% overall yields, without purification of intermediates.**

It is well-established that the replacement of hydrogen atoms of organic molecules by fluorine atoms strongly modifies their chemical, physical, and biological properties. Several applications reported the enhancement of the half-life of drugs due to the high stability of the carbon-fluorine bond or the synthesis of suicide inhibitors induced by the elimination of fluorine atom during the metabolization process.¹ Toward this goal, the fluorovinylic moiety has been introduced in various bioactive compounds such as sex pheromones, ribonucleotides, or retinal analogues.²

The widely used strategy to build (*E*)-fluoroalkenoates from aldehydes is the Horner-Wadsworth-Emmons reaction (HWE), involving the commercially available triethyl 2-fluoro-2-phosphonoacetate.3 Alternative approaches based on concerted elimination of *â*-mesyloxy sulfoxides afforded (*E)-*fluoroalkenes with moderate selectivity.4 Concerning the preparation of the *Z* isomer, the most elegant and direct approach consisted of alkylating the ethyl phenylsulfinyl fluoroacetate to produce exclusively (*Z*)-fluoropropenoates by a stereoselective elimination of sulfenic acid.5 On the other hand, a phenylselenenyl fluoride equivalent has been used to produce (*Z*)-fluoroalkenoates from diazoesters.⁶ Few methods have reported the selective synthesis of (*Z*) fluoroalkenoates from aldehydes. The most efficient are the zinc-copper chloride promoted reaction of methyl difluoroacetate with carbonyl compounds,⁷ the Peterson olefination involving aldehydes and α -fluoro- α -silyl acetate as a starting building block,⁸ and the transformation of fluorinated sym-

⁽¹⁾ Welch, J. T. *Tetrahedron* **¹⁹⁸⁷**, *⁴³*, 3123-3197.

⁽²⁾ Camps, F.; Coll, J.; Fabrias, G.; Guerrero, A. *Tetrahedron* **1984**, *40*, ²⁸⁷¹-2878. McCarthy, J. R.; Matthews, D. P.; Stemerick, D. M.; Huber, E. W.; Bey, P.; Lippert, B. J.; Snyder, R. D.; Sunkara, P. S. *J. Am. Chem. Soc.* **¹⁹⁹¹**, *¹¹³*, 7339-7440. Francesh, A.; Alvarez, R.; Lopez, S.; de Lera, A. R. *J. Org. Chem.* **¹⁹⁹⁷**, *⁶²*, 310-319.

⁽³⁾ Burton, D. J.; Yang, Z. Y.; Qui, W. *Chem. Re*V*.* **¹⁹⁹⁶**, *⁹⁶*, 1641- 1715. Sano, S.; Ando, T.; Yokoyama, K.; Nagao, Y. *Synlett* **¹⁹⁹⁸**, 777- 779.

⁽⁴⁾ Satoh, T.; Itoh, N.; Onda, K.; Kitoh, Y.; Yamakawa, K. *Tetrahedron Lett.* **¹⁹⁹²**, *³³*, 1483-1484.

⁽⁵⁾ Allmendinger, T. *Tetrahedron* **¹⁹⁹¹**, *⁴⁷*, 4905-4914.

⁽⁶⁾ Usuki, Y.; Iwaoka, M.; Tomoda, S. *J. Chem. Soc., Chem. Commun.* **¹⁹⁹²**, 1148-1150.

⁽⁷⁾ Ishihara, T.; Kuroboshi, M. *Chem. Lett.* **¹⁹⁸⁷**, 1145-1148.

⁽⁸⁾ Welch, J. T.; Lin, J. *Tetrahedron Lett.* **¹⁹⁹⁸**, *³⁹*, 9613-9616.

⁽⁹⁾ Ishihara, T.; Shintani, A.; Yamanaka, H. *Tetrahedron Lett.* **1998**, *39*, ⁴⁸⁶⁵-4868.

metrical diols by vanadium trichloride oxide.⁹ Other routes have been reported using fluoromethyl phenyl sulfones or the isomerization of (E) -alkenoates.¹⁰

In this field, we were interested in new methodologies for the incorporation of the fluorovinylic moiety from aldehydes. We recently described a general synthesis of fluorinated β -hydroxysulfides, and we investigated their potentiality as alkene precursors.11 Some methods described the conversion of *â*-hydroxysulfides to alkenes, leading to a mixture of stereoisomers.¹² Durst and others reported the selective synthesis of alkenes from *â*-hydroxysulfoxides. The formation of the intermediate cyclic sultine allowed the concerted elimination of the sulfinyl and hydroxyl functions to introduce a carbon-carbon double bond.¹³ However, few synthetic applications of this reaction have been reported.

We carried out the oxidation of the pure *anti* and *syn* sulfides to sulfoxides **1a** and **4a**, using *m*CPBA at low temperature. Their oxidation led to a diastereoisomeric mixture of sulfoxides in quantitative yields, and products were used without purification to investigate the Durst reaction.

We treated the mixture of crude 2,3-*syn* sulfoxides **1a** with a solution of sulfuryl chloride (2 equiv) in dichloromethane. After 30 min of contact, the excess sulfuryl chloride was evaporated and then the crude products were stirred at room temperature in a dichloromethane solution. By monitoring the evolution of the reaction by fluorine NMR, we observed the apparition of two doublets (at -125.9 and -117.9 ppm) described as fluoroalkenes **3a**. ¹⁴ The ratio of the stereoisomers was stable from the beginning to the end of the transformation of the *â*-hydroxysulfoxides **1a**. After 30 h of stirring at room temperature and distillation of the crude product, finally we obtained a 98/2 mixture of alkenes **3a** isolated in 67% yield. The full characterization by 1D and ¹H{¹⁹F} NOE difference NMR allowed us to assign the major product as the *Z* isomer **3a**. This selective formation of the (*Z*)-fluoroalkenoate **3a** could be explained if we considered the formation of the intermediate sultine **2** from the sulfoxide **1a**, as reported by Durst (Scheme 1).

On the other hand, we carried out the same reaction from the 2,3-*anti* sulfoxides **4a**. Surprisingly the fluoroalkenoate **3a** was formed in a 98/2 *Z/E* ratio (Scheme 1). As previously

observed by monitoring the reaction $(^{19}F$ NMR), the ratio was stable during the process. The selective formation of the (*Z*)-alkenoate from the sulfoxides **4a** was unexpected, if we considered the mechanism involved from the sulfoxides **1a**. However, any isomerization of the pure (*E*)-alkenoate was observed in the same medium $(SO₂Cl₂/CH₂Cl₂)$. The formation of the (*Z*)-**3a** from **4a** probably involves a radical or anionic elimination.

Theses results were generalized to develop a stereoselective synthesis of (*Z*)-fluoroalkenoates from the fluoroacetate **5** and aldehydes without purification of the diastereoisomers **1** and **4**.

The methyl *tert-*butylsulfanyl fluoroacetate (**5**) was treated with LDA at -78 °C to produce a mixture of *Z* and *E* enol ethers, which were trapped by aldehydes. After 2 h of stirring, a crude diasteroisomeric mixture of *â*-hydroxysulfides was obtained by acidic workup. After usual oxidation of the crude m CPBA, the mixture of sulfoxides $1a - g$ and $4a - g$ was then treated with sulfuryl chloride, leading selectively to (*Z*) fluoroalkenoates **3a**-**^g** (Scheme 2).

By this three-step procedure from the fluorosulfide **5** and the benzaldehyde, the (*Z*)-fluoroalkenoate **3a** was formed stereoselectively and isolated in 53% overall yield (Table 1, entry 1).

This procedure was generalized to aromatic or aliphatic aldehydes (Table 1). The selectivity was still high, and fair Scheme 1 overall yields from the three-step synthesis were obtained.

Table 1. Selective Synthesis of (Z) - α -Fluoro α , β -Unsaturated Esters

entry	R	product	overall yield $(\%)^a$	ΖE ratio ^b
1	Ph	$3a^{14}$	53	99/1
2	p -(NO ₂)Ph	3b	61	95/5
3	$n-C_5H_{11}$	$3c^{14}$	47	88/12
4	$n-C_8H_{17}$	3d	60	94/6
5	<i>i-</i> Bu	3e	27c	97/3
6	$n-C_3H_7$	3f ⁷	32c	94/6
7	$i-Pr$	$3g^{14}$	34c	98/2

^a Isolated overvall yield from **5**. *^b* 19F NMR of the crude. *^c* Volatile products.

Due to their high volatility, fluoroalkenes **3e**-**^g** were difficult to isolate. This method opens up a convenient route for the stereoselective synthesis of (*Z*)*-*fluoroalkenoates from readily available fluorinated building blocks **5**. The complete

(11) Jouen, C.; Lemaıˆtre, S.; Lequeux, T.; Pommelet, J. C. *Tetrahedron* **¹⁹⁹⁸***, ⁵⁴*, 10801-10810.

(12) Denis, J. N.; Krief, A. *Tetrahedron Lett.* **¹⁹⁷⁹**, 4111-4112. Shimagaki, M.; Shiokawa, M.; Sugai, K.; Teranaka, T.; Nakata, T.; Oishi, T. *Tetrahedron Lett.* **¹⁹⁸⁸**, *²⁹*, 659-662.

(13) Jung, F.; Sharma, N. K.; Durst, T. *J. Am. Chem. Soc.* **1973**, *95*, ³⁴²⁰-3422. Nokami, J.; Kunieda, N.; Kinoshita, M. *Tetrahedron Lett.* **¹⁹⁷⁵**, ²¹⁷⁹-2182.

(14) Etemad-Moghadam, G.; Seyden-Penne, J. *Bull. Soc. Chim. Fr.* **1985**, ⁴⁴⁸-454.

generalization of this method to ketones and highly functionalized aldehydes is under investigation to undertake the synthesis of modified biologically active compounds.

Acknowledgment. We thank Mrs. M. Ourévitch (CNRS-Châtenay-Malabry) for the NMR experiments and *Le Ministe*`*re de l'Education Nationale de la Recherche et de la Technologie* for their financial support (grant to D.C.).

Supporting Information Available: ¹H, ¹³C, and ¹⁹F NMR spectra and MS of **3b**,**d**-**^e** and typical experimental procedure for their synthesis. This material is available free of charge via the Internet at http://pubs.acs.org.

OL990178U

⁽¹⁰⁾ McCarthy, J. R.; Huber, E. W.; Le, T. B.; Laskovics, F. M.; Matthews, D. P. *Tetrahedron* **¹⁹⁹⁶**, *⁵²*, 45-58. Daubresse, N.; Chupeau, Y.; Francesh, C.; Lapierre, C.; Pollet, B.; Rolando, C. *J. Chem. Soc., Chem. Commun.* **¹⁹⁹⁷**, 1489-1490.